White Paper

NET

Your Security
Scans Are
Missing Critical
Vulnerabilities

Here's why. . .

Your Security Scans Are Missing Critical Vulnerabilities

If you're responsible for software in any capacity—whether you're writing
it, securing it, or managing it—your current vulnerability scanners are likely
missing significant portions of your actual attack surface.

I've spent the last year and a half watching our binary analysis platform reveal
vulnerabilities that conventional scanners completely miss. And honestly? Each
discovery is eye-opening for everyone involved—including us. Every instance
reinforces the same lesson: the code you think you're running isn't the code
that's actually running.

The Team Behind These Insights

As VP of Engineering, | spend more time in
architecture discussions and strategy meetings
than deep in the code these days. But here's
what gives me the confidence to write about
binary analysis: | work directly with some of the
world’s leading experts in this field.

Our team includes Craig Heffner, creator of VA\\Q

binwalk and former NSA Red Team member;
Peter Eacmen and Terry Dunlap, both former Anthony Feddersen
cofounders of RefirmLabs with extensive VP of Engineering,

experience across intelligence agencies and Netrise

military branches; and our CTO, Michael Scott, J
formerly at the Marine Corps Cyber Warfare
Group within USCYBERCOMMAND.

Working alongside these experts for years has given me a unique vantage
point - I've learned from their deep technical expertise while also seeing how
these concepts apply to broader engineering and business challenges. They've
reviewed every technical detail in this post, ensuring accuracy while | focus on
making these insights accessible and actionable.

Let me show you what we've found.

NET Your Security Scans Are Missing Critical Vulnerabilities

Real World Case Studies

When OpenSSL 3.0.0 Hides in Plain Sight

When the NetRise Platform® flagged OpenSSL 3.0.0 in a firmware image for a widely used network operating system,
the device owner escalated immediately. They had every right to be skeptical—their own system diagnostics showed a
completely different, and seemingly safe, story. For this specific device, the installed package manager reported OpenSSL
3.0.7:

$ rpm -q openssl

openss1-3.0.7-41869325. |- 1 - x86_64
$ 1s /1ib64/1ibssl.so.*
/1ib64/1ibssl.so0.3.2.2

We take this kind of escalation very seriously at NetRise. When customers challenge our findings, we don't just point to
automated results—we break out our manual analysis tools and leverage years of binary forensics expertise to provide
concrete evidence. In this case, we went straight to the source and examined the Python SSL modules directly:

$ strings /usr/lib64/python3.9/1ib-dynload/_ssl.cpython-39-x86_64-linux-gnu.so | grep “OPENSSL_”
OPENSSL_3.0.9

OPENSSL_sk_new_null

OPENSSL_sk_num

OPENSSL_sk_pop_free

There it was—O0penSSL 3.0.0, sitting inside Python's SSL module. Our manual investigation revealed it everywhere
Python touched crypto:

Pattern ‘OPENSSL_3.0.0° found
/usr/1ib64/python2.7/1ib-dynload/_ssl.so
/usr/1ib64/python2.7/1ib-dynload/_hashlib.so
/usr/1ib64/python3.9/1ib-dynload/_ssl.cpython-39-x86_64-1inux-gnu.so
/usr/1ib64/python3.9/1ib-dynload/_hashlib.cpython-39-x86_64-1inux-gnu.so
/usr/1ib64/python3.9/site-packages/cryptography/hazmat/bindings/_openssl.abi3.so
/usr/1ib64/python3.9/site-packages/M2Crypto/_m2crypto.cpython-39-x86_64-1linux-gnu.so
/usr/1ib64/python3.9/site-packages/pycurl.cpython-39-x86_64-1linux-gnu.so

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved.

http://www.netrise.io
mailto:info%40netrise.io?subject=

Your Security Scans Are Missing Critical Vulnerabilities

Here's what happened: When Python was compiled for this widely used network operating system, it was built against
OpenSSL 3.0.0. The Python modules contain statically linked OpenSSL code that's frozen in time. System library updates
don't touch it. This means vulnerabilities like CVE-2022-3602 and CVE-2022-3786 could still be exploitable through
Python SSL operations, even though the system library shows as patched.

The customer’s own diagnostic actually confirmed our finding:

$ 1dd ./_hashlib.cpython-39-x86_64-1inux-gnu.so

linux-vdso.so.1 (©x00007fff9384b000)
libcrypto.so.3 => /1ib64/libcrypto.so.3 (©0x00007f541a35b000)

While ldd shows dynamic linking to libcrypto.so.3 for some
functions, the module also contains statically linked OpenSSL
3.0.0 code that ldd can’t see. So your dependency scanning
tools report that you're using the current OpenSSL version
based on the dynamic links, but they're completely missing
the vulnerable legacy code that’s actually compiled directly
into your binary. The tools show you one thing, but the
reality of what's running in production is entirely different.

The Vendored Library Problem

Another escalation came from a manufacturer of loT devices when we reported z1ib 1.2.8
in their embedded Linux system. They pushed back hard, insisting they ship zlib 1.3.1:

$ 1s /1ib/1libz.so.*
/1ib/1ibz.so0.1.3.1

$ rpm -q zlib
z1ib-1.3.1-1.e19.x86_64

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved.

http://www.netrise.io
mailto:info%40netrise.io?subject=
https://nvd.nist.gov/vuln/detail/cve-2022-3602
https://nvd.nist.gov/vuln/detail/cve-2022-3786

Your Security Scans Are Missing Critical Vulnerabilities

Again — this type of escalation is not uncommon—customers see conflicting information between our platform results
and their system queries, and they're right to question it. When NetRise identifies components that don't match package
manager output, we'll dig deeper with our manual analysis toolkit to give customers the evidence they need if they're not
satisfied with the evidence we've already provided in the platform. In this case, we traced the old z1ib version to
/bin/rsync and dove into the source code investigation that our platform had flagged.

Our manual verification revealed the culprit—rsync vendors their own copy of zlib:

rsync/
F— zlib/ # Vendored zlib 1.2.8
| }— deflate.c

| | inflate.c

| L— zlib.h # Version: 1.2.8
|— configure.ac # Line 162: --with-included-zlib option
L— Makefile.in

The rsync project includes z1ib 1.2.8 in their source tree by default. You can compile it to use the system zlib with
--with-included-zlib=no, but most distributions use the default configuration. So every system shipping a standard
rsync binary has this old zlib version embedded in it, regardless of what the package manager reports.

The Hidden Dependency Problem

When you run make or npm build, your compiler doesn't
just translate source code. It resolves symbols, links
libraries, performs dead code elimination, and applies
optimizations. Each step involves critical choices: Should it
use the system OpenSSL at /usr/1ib/1libssl.so0.3 or

the one in your build cache at /opt/build/deps/libss1.

so0.1.1? When gcc encounters -02, it might inline entire
functions from static libraries. When Go compiles with
CGO_ENABLED=1, it's making runtime versus compile-
time linking decisions that completely change your attack
surface.

The core problem is that vulnerable libraries get baked
directly into your binaries through static linking and
vendoring. Meanwhile, your conventional scanners—the
ones checking package. json, go.mod, or pom.xml—are
analyzing intention, not reality. They have no visibility into
what actually happened during compilation.

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved.

Compilation is a complex, multi-
stage process where your compiler
makes thousands of decisions

that fundamentally shape your
final binary—and each decision can
introduce security risks that your
source-code scanning tools can't
see.

http://www.netrise.io
mailto:info%40netrise.io?subject=

Your Security Scans Are Missing Critical Vulnerabilities

Here's how compilation introduces vulnerabilities that manifest-based scanning will never catch:

</>

{}

Dependency Resolution at Build Time

Your build system makes real-time decisions. Take Maven'’s nearest-wins strategy—if two dependencies require
different versions of commons-logging, Maven picks the one closest to your root pom.xml. But here's what
happens: your Cl environment has commons-logging 1.1.1 inits .m2 cache from a previous build. Your
manifest declares 1.2, but Maven finds 1.1.1 first and uses it. The manifest scanner reports 1.2. Your binary
contains 1.1.1 with CVE-2018-11771. We see this constantly with npm’s hoisting behavior and Go’s minimal
version selection.

Transitive Dependencies Getting Compiled In

When you import requests in Python, it pulls in ur1lib3, which pulls in certifi, which might pull in an old
ss1 module. During compilation with python setup.py build_ext, these get resolved based on your build
environment’s state. If you're using pip install --target or building wheels, these transitive dependencies
become part of your distributed binary. They're not in your requirements.txt, so your scanner misses them
entirely.

Static Linking Behavior

This one’s everywhere. Build a Go binary with go build -tags netgo, and you're statically linking the entire
net package. Compile Node.js modules with node-gyp, and OpenSSL gets embedded directly into your .node
files. Even webpack, when you use node: { crypto: true }, can embed crypto libraries into your bundle.
The command 1dd won't even show these because they're not dynamically linked—they're literally part of your
executable’s . text segment.

Build-Time Code Generation

Frameworks, like gRPC, generate code during compilation. Run protoc --go_out=plugins=grpc:.
*.proto, and you're creating new code based on your proto definitions. If there's a vulnerability in the
generated marshaling code, you'll never find it by scanning your source. Same with Spring Boot's annotation
processors or Lombok’'s compile-time code generation. The vulnerable code doesn't exist until javac runs.

Vendored Dependencies with Modifications

We've found this pattern repeatedly: teams vendor dependencies using go mod vendor or npm pack, then
apply patches. During compilation with flags like -mod=vendor or --prefer-offline, these modified
versions get compiled in. They don't match any known version in vulnerability databases. One customer had
avendored zlib 1.2.8 with custom patches in their rsync binary. The patches actually introduced a new
vulnerability, but no scanner could detect it because this version literally doesn't exist outside their build.

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved.

http://www.netrise.io
mailto:info%40netrise.io?subject=
https://nvd.nist.gov/vuln/detail/cve-2018-11771

Your Security Scans Are Missing Critical Vulnerabilities

The takeaway? Modern compilation
involves thousands of micro-decisions—

— We need to stop pretending that symbol resolution, link order, optimization
manifest files represent reality. They levels, build flags. Each decision can
represent intent. If you want to know introduce vulnerable code that doesn’t
what vulnerabilities are actually in your appear in any manifest. You're scanning
production systems, you need to anal\/ze the architectural blueprint while the actual

building was constructed by a compiler
making autonomous decisions based on
whatever it found in the build environment
at that exact moment.

the compiled binaries themselves.

Understanding the Hidden Attack Surface

When we analyzed the widely used network operating system, the scope became clear. We found 47 components with
hidden dependencies—14 cases of static linking (mostly OpenSSL in Python modules), three vendored libraries, and 30
instances of build-time injection.

Traditional Software Composition Analysis tools parse manifest files like package.json, pom.xml, or RPM databases. But
they're completely blind to several categories of dependencies.

Static linking freezes library code at compile time. Our Python OpenSSL case shows this perfectly—
CO modules compiled against OpenSSL 3.0.0 keep that code forever, even after system upgrades to
3.2.2. It's baked in, not referenced.

Vendored dependencies happen when projects include third-party libraries in their source tree.

EEE The rsync team vendors zlib to ensure compatibility. We also found vendored popt and stunnel
libraries in other binaries. These never show up in dependency manifests because they're part of the
main package.

Build environment dependencies sneak in during compilation. Container base images contribute

</> system packages. Build toolchains embed library versions. Transitive dependencies add components
that nobody explicitly declared. The final binary contains code from all these sources, but the
manifest only knows about direct dependencies.

Compilation flags change everything. Building rsync with default settings yields a version with
I:j vendored z1lib 1.2.8. Build it with --with-included-z1lib=no and you get system zlib. There's
no way to tell which path was taken just by looking at the binary name.

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved. 7

http://www.netrise.io
mailto:info%40netrise.io?subject=

Your Security Scans Are Missing Critical Vulnerabilities

How Binary Composition Analysis Works

Binary Composition Analysis examines compiled binaries understand why a component is there.
rather than declared dependencies. Think of it as forensics ~ Here's how we investigated rsync:

for executables.
First, binary signature detection identified zlib 1.2.8. We

The detection process combines multiple techniques. traced itto /bin/rsync. Symbol verification confirmed
We use signature-based identification to find binary embedded zlib code. Source validation showed the GitHub
patterns unique to specific library versions. Symbol repository contains a zlib directory. The root cause?
analysis examines exported and imported symbols. File Vendored dependency in the rsync source. The fix?

carving recursively extracts embedded components. When Recompile rsync with —-with-included-zlib=no.
possible, we cross-reference findings with source code to

Want to Investigate This Yourself?

If you're determined to dig into these issues manually, it's possible—but it requires a significant investment in time and
specialized expertise. The process below gives you a glimpse into the painstaking, multi-tool investigation required for a
single binary. Now, imagine scaling this across your entire software portfolio.

Here's a look at the manual playbook our experts use when they need to go deep.

First, you need to dissect the binary itself. We'd start with a tool like binwalk (built by our own Craig Heffner) to see
what's embedded inside.

Start with binwalk - it's your best friend for analyzing firmware and binaries to see what's actually embedded inside
them:

Basic analysis to see embedded files and signatures
binwalk /path/to/binary
Extract embedded components for deeper inspection

binwalk -e /path/to/binary
Look for specific signatures (like OpenSSL or zlib)
binwalk --signature /path/to/binary

This is just the first step. Next, the real forensics begins. You'll need to hunt for clues like version strings, but grep is a
blunt instrument. Sifting through the noise to find a real indicator requires a trained eye.

Hunt for version strings in binaries
strings /path/to/binary | grep -E “OpenSSL [0-9]\.[0-9]\.[0-9]”
strings /path/to/binary | grep -E “zlib [0-9]\.[0-9]\.[0-9]”

Examine symbols to see what functions are present
objdump -T /path/to/binary | grep OPENSSL
nm -D /path/to/binary | grep zlib

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved.

http://www.netrise.io
mailto:info%40netrise.io?subject=

Your Security Scans Are Missing Critical Vulnerabilities

Finding a string or a symbol is a good start, but it isn't proof. You still need to dig into the source code and build
configurations—becoming an archaeologist for build flags and vendored code. This is an often brittle, error-prone hunt.

Look for vendored directories (they love to hide)

find . -type d \(-name “zlib” -o -name “openssl” -o -name “vendor” \)
Examine build configuration for static linking flags

grep -r “with-included” configure.ac

grep -r “vendor” CMakelists.txt

Pay special attention to build flags that affect how dependencies get compiled in. For rsync, watch for ——with-included-
zlib=no and --with-included-popt=no. Python builds use --with-system-ffi and --with-system-expat. And
OpenSSL linking behavior changes completely depending on whether you're using --enable-shared versus static linking
choices.

As you can see, this is a complex, expert-driven process for just one component. A proper “build-it-yourself” approach
requires stitching together a dozen open-source tools (e.g., binwalk, syft, grype, etc.)into a custom pipeline. You
have to hire the right people to build it, operate it, and—most importantly—interpret the fragmented results. Even then,
you'll only get about 50% of the way to a comprehensive solution.

For most organizations, the investment in building and maintaining such a system, and hiring the scarce talent to run it, is
simply unsustainable. The real challenge isn't just finding a single vulnerability; it's creating a scalable, automated program
that provides a single source of truth for your entire attack surface. That's precisely the problem we built NetRise to solve.

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved.

http://www.netrise.io
mailto:info%40netrise.io?subject=

Your Security Scans Are Missing Critical Vulnerabilities

() If You're on the Security Team

Don't dismiss unexpected findings—investigate them. Our rsync “false positive” turned out to be a vendored
dependency the vendor didn't even know about. When your scanner finds something weird, that's usually
where the interesting stuff is.

Document your validation process thoroughly, as you'll need it repeatedly. Begin by identifying the binary
location, then check for vendored directories in the source. Next, verify the findings using strings or binary
analysis, and finally, document which compilation flags impact the behavior. Build yourself a database of
known vendoring patterns. We've found rsync vendors zlib and popt, Python can statically link OpenSSL,
and there are plenty more out there.

</> If You're on the Development Team

Stop assuming your dependencies use system libraries. Run a quick check for vendored code in your upstream
dependencies:

find . -type d -name “z1lib” -o -name “openssl” -o -name “vendor”

Get familiar with your build flags. Know that rsync needs --with-included-zlib=no to use system zlib. Python
needs --with-system-ffi --with-system-expat. Document all the flags that affect dependencies in your own
software.

And here's the big one: when you patch a library, rebuild everything that might include it. Not just the direct
dependencies—everything. Yes, it's a pain. Yes, it's necessary.

Q If You're a Vendor or in Leadership

Time for some tough love:

You need to invest in real investigation capabilities. Our rsync you don't actually know

investigation required binary analysis tools, source code what you're shipping. Our

examination, build system understanding, and cross-reference investigations consistently /
validation. This isn't something you can hand-wave away. show vendors being

surprised by what'’s in their

Make all of this visible in your SBOMs. Don't just list “zlib 1.3.1
products.

(system library).” Show that rsync has zlib 1.2.8 vendored, note
that it was built with default flags (vendored enabled), and
document that recompilation with proper flags could fix it.

www.netrise.io « info@netrise.io * Copyright © NetRise Inc. All Rights Reserved. 10

http://www.netrise.io
mailto:info%40netrise.io?subject=

Your Security Scans Are Missing Critical Vulnerabilities

The Bottom Line

The evidence from our investigations is undeniable. Vendors don’'t know what's in
their products. Package managers miss vendored and statically linked code. Binary
signatures reveal what's actually running. And when we investigate, we consistently
confirm these findings. This problem is widespread and systematic, likely affecting
you right now.

As one of our engineers put it: “This shows that code from a version of zlib that
the system maker wasn't aware of [is] on their image due to an upstream package
dependency vendoring.” That's not a bug—it's how modern software development
works.

This isn't about pointing fingers at specific vendors. It's an industry-wide problem.
Every compiled binary potentially carries hidden dependencies. Every vendored
library is a security update that won't reach its target. Every static link is a future CVE
waiting to happen.

Binary Composition Analysis isn't just another security tool to add to your stack. It's
the investigative process that reveals what's actually running in your environment
versus what you think is running. And trust me, those are two very different things.

You've got hidden dependencies. We've proven it over and over. The question isn't
whether they exist—it's whether you're going to find them before someone with less
friendly intentions does.

Anthony Feddersen is the VP of Engineering at NetRise, where he leads the
development of advanced binary analysis solutions to secure the software supply
chain. His career has focused on building and securing foundational cloud services
at scale, previously serving as head of engineering at Chainguard and in senior
leadership roles at Electronic Arts, VMware, and Google.

NET

What's Inside
Your Software?

Get a Demo

https://www.netrise.io/demo-request

